Part Number Hot Search : 
70010 MAX3349E ML200211 012T2R 6MBP20 5230B DPAN02 V68ZA05P
Product Description
Full Text Search
 

To Download IRF1404L Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  irf1404s IRF1404L power mosfet the d 2 pak is a surface mount power package capable of accommodating die sizes up to hex-4. it provides the highest power capability and the lowest possible on- resistance in any existing surface mount package. the d 2 pak is suitable for high current applications because of its low internal connection resistance and can dissipate up to 2.0w in a typical surface mount application. the through-hole version (IRF1404L) is available for low- profile applications. s d g absolute maximum ratings thermal resistance v dss = 40v r ds(on) = 0.004 w i d = 162a ? l advanced process technology l ultra low on-resistance l dynamic dv/dt rating l 175c operating temperature l fast switching l fully avalanche rated description d 2 pak irf1404s to-262 IRF1404L parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v ? 162 ? i d @ t c = 100c continuous drain current, v gs @ 10v ? 115 ? a i dm pulsed drain current ?? 650 p d @t a = 25c power dissipation 3.8 w p d @t c = 25c power dissipation 200 w linear derating factor 1.3 w/c v gs gate-to-source voltage 20 v e as single pulse avalanche energy ? 519 mj i ar avalanche current ? 95 a e ar repetitive avalanche energy ? 20 mj dv/dt peak diode recovery dv/dt ?? 5.0 v/ns t j operating junction and -55 to +175 t stg storage temperature range -55 to +175 soldering temperature, for 10 seconds 300 (1.6mm from case ) c parameter typ. max. units r q jc junction-to-case CCC 0.75 c/w r q ja junction-to-ambient (pcb mounted, steady-state) * CCC 40 2014-8-12 1 www.kersemi.com
irf1404s/l electrical characteristics @ t j = 25c (unless otherwise specified) ? repetitive rating; pulse width limited by max. junction temperature. (see fig. 11) ? i sd 95a, di/dt 150a/s, v dd v (br)dss , t j 175c notes: ? starting t j = 25c, l = 0.12mh r g = 25 w , i as = 95a. (see figure 12) ? pulse width 300s; duty cycle 2%. s d g parameter min. typ. max. units conditions i s continuous source current mosfet symbol (body diode) CCC CCC showing the i sm pulsed source current integral reverse (body diode) ? CCC CCC p-n junction diode. v sd diode forward voltage CCC CCC 1.3 v t j = 25c, i s = 95a, v gs = 0v ? t rr reverse recovery time CCC 71 110 ns t j = 25c, i f = 95a q rr reverse recoverycharge CCC 180 270 nc di/dt = 100a/s ?? t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by l s +l d ) source-drain ratings and characteristics 162 ? 650 a ? c oss eff. is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss ? calculated continuous current based on maximum allowable junction temperature. package limitation current is 75a parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 40 CCC CCC v v gs = 0v, i d = 250a d v (br)dss / d t j breakdown voltage temp. coefficient CCC 0.036 CCC v/c reference to 25c, i d = 1ma r ds(on) static drain-to-source on-resistance CCC 0.00350.004 w v gs = 10v, i d = 95a ? v gs(th) gate threshold voltage 2.0 CCC 4.0 v v ds = 10v, i d = 250a g fs forward transconductance 106 CCC CCC s v ds = 25v, i d = 60a ? CCC CCC 20 a v ds = 40v, v gs = 0v CCC CCC 250 v ds = 32v, v gs = 0v, t j = 150c gate-to-source forward leakage CCC CCC 200 v gs = 20v gate-to-source reverse leakage CCC CCC -200 na v gs = -20v q g total gate charge CCC 160 200 i d = 95a q gs gate-to-source charge CCC 35 CCC nc v ds = 32v q gd gate-to-drain ("miller") charge CCC 42 60 v gs = 10v ?? t d(on) turn-on delay time CCC 17 CCC v dd = 20v t r rise time CCC 140 CCC i d = 95a t d(off) turn-off delay time CCC 72 CCC r g = 2.5 w t f fall time CCC 26 CCC r d = 0.21 w ?? between lead, and center of die contact c iss input capacitance CCC 7360 CCC v gs = 0v c oss output capacitance CCC 1680 CCC v ds = 25v c rss reverse transfer capacitance CCC 240 CCC pf ? = 1.0mhz, see fig. 5 ? c oss output capacitance CCC 6630 CCC v gs = 0v, v ds = 1.0v, ? = 1.0mhz c oss output capacitance CCC 1490 CCC v gs = 0v, v ds = 32v, ? = 1.0mhz c oss eff. effective output capacitance ?? CCC 1540 CCC v gs = 0v, v ds = 0v to 32v i gss ns i dss drain-to-source leakage current nh 7.5 l s internal source inductance CCC CCC ? use irf1404 data and test conditions. 2014-8-12 2 www.kersemi.com
fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics 10 100 1000 0.1 1 10 100 20 s pulse width t = 25 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source voltage (v) i , drain-to-source current (a) ds d 4.5v 10 100 1000 0.1 1 10 100 20 s pulse width t = 175 c j top bottom vgs 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v 4.5v v , drain-to-source volta g e (v) i , drain-to-source current (a) ds d 4.5v 10 100 1000 4.0 5.0 6.0 7.0 8.0 9.0 v = 25v 20s pulse width ds v , gate-to-source voltage (v) i , drain-to-source current (a) gs d t = 25 c j t = 175 c j -60 -40 -20 0 20 40 60 80 100 120 140 160 180 0.0 0.5 1.0 1.5 2.0 2.5 t , junction temperature ( c) r , drain-to-source on resistance (normalized) j ds(on) v = i = gs d 10v 159a irf1404s/l 2014-8-12 3 www.kersemi.com
fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 0 2000 4000 6000 8000 10000 12000 v , drain-to-source volta g e (v) c, capacitance (pf) ds v c c c = = = = 0v, c c c f = 1mhz + c + c c shorted gs iss g s g d , ds rss g d oss ds g d c iss c oss c rss 0 40 80 120 160 200 240 0 4 8 12 16 20 q , total gate charge (nc) v , gate-to-source voltage (v) g gs for test circuit see figure i = d 13 95a v = 20v ds v = 32v ds 1 10 100 1000 0.4 0.8 1.2 1.6 2.0 2.4 v ,source-to-drain volta g e (v) i , reverse drain current (a) sd sd v = 0 v gs t = 25 c j t = 175 c j 1 10 100 1000 10000 1 10 100 operation in this area limited by r ds(on) sin g le pulse t t = 175 c = 25 c j c v , drain-to-source voltage (v) i , drain current (a) i , drain current (a) ds d 10us 100us 1ms 10ms irf1404s/l 2014-8-12 4 www.kersemi.com
fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10a. switching time test circuit v ds 90% 10% v gs t d(on) t r t d(off) t f fig 10b. switching time waveforms v ds pulse width 1 s duty factor 0.1 % r d v gs r g d.u.t. 10v + - v dd 25 50 75 100 125 150 175 0 40 80 120 160 200 t , case temperature ( c) i , drain current (a) c d limited by package 0.01 0.1 1 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) irf1404s/l 2014-8-12 5 www.kersemi.com
q g q gs q gd v g charge d.u.t. v ds i d i g 3ma v gs .3 m f 50k w .2 m f 12v current regulator same type as d.u.t. current sampling resistors + - 10 v fig 13b. gate charge test circuit fig 13a. basic gate charge waveform fig 12c. maximum avalanche energy vs. drain current fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 w t p d.u.t l v ds + - v dd driver a 15v 20v fig 12d. typical drain-to-source voltage vs. avalanche current 0 20 40 60 80 100 i av , avalanche current ( a) 40 42 44 46 48 50 v dsav , avalanche voltage ( v ) 25 50 75 100 125 150 175 0 200 400 600 800 1000 1200 starting t , junction temperature ( c) e , single pulse avalanche energy (mj) j as i d top bottom 39a 67a 95a irf1404s/l 2014-8-12 6 www.kersemi.com
p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period + - + + + - - - fig 14. for n-channel hexfet ? power mosfets * v gs = 5v for logic level devices peak diode recovery dv/dt test circuit ? ? ? r g v dd dv/dt controlled by r g driver same type as d.u.t. i sd controlled by duty factor "d" d.u.t. - device under test d.u.t circuit layout considerations low stray inductance ground plane low leakage inductance current transformer ? * irf1404s/l 2014-8-12 7 www.kersemi.com
d 2 pak package outline d 2 pak part marking information f 530s this is an irf530s with lot code 8024 as s embled on ww 02, 2000 in the assembly line "l" assembly lot code int ernational rectifier logo part number dat e code year 0 = 2000 we e k 02 line l irf1404s/l 2014-8-12 8 www.kersemi.com
to-262 part marking information to-262 package outline example: this is an irl3103l lot code 1789 assembly part number dat e code week 19 line c l ot code ye ar 7 = 1997 assembled on ww 19, 1997 in the assembly line "c" logo rectifier int ernational irf1404s/l 2014-8-12 9 www.kersemi.com
d 2 pak tape & reel information 3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge. irf1404s/l 2014-8-12 10 www.kersemi.com


▲Up To Search▲   

 
Price & Availability of IRF1404L

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X